formally refutable - definição. O que é formally refutable. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é formally refutable - definição

NOTION IN ALGEBRAIC GEOMETRY
Formally smooth morphism; Formally smooth; Formally unramified

Formally real field         
FIELD THAT CAN BE EQUIPPED WITH AN ORDERING
Formally real
In mathematics, in particular in field theory and real algebra, a formally real field is a field that can be equipped with a (not necessarily unique) ordering that makes it an ordered field.
Quasi-unmixed ring         
A NOETHERIAN RING
Formally equidimensional ring; Formally catenary ring
In algebra, specifically in the theory of commutative rings, a quasi-unmixed ring (also called a formally equidimensional ring in EGA) is a Noetherian ring A such that for each prime ideal p, the completion of the localization Ap is equidimensional, i.e.
SNC-Lavalin Rail & Transit         
  • Original Logo
BRITISH RAIL INDUSTRY CONSULTANCY COMPANY
Interfleet Technology; Interfleet technology; Interfleet; InterFleet; Interfleet Technology Limited; SNC-Lavalin Rail & Transit (formally Interfleet)
SNC-Lavalin Rail & Transit (Interfleet Technology until 2015) is an international rail consultancy company headquartered in Derby, England. It was founded in 1994.

Wikipédia

Smooth morphism

In algebraic geometry, a morphism f : X S {\displaystyle f:X\to S} between schemes is said to be smooth if

  • (i) it is locally of finite presentation
  • (ii) it is flat, and
  • (iii) for every geometric point s ¯ S {\displaystyle {\overline {s}}\to S} the fiber X s ¯ = X × S s ¯ {\displaystyle X_{\overline {s}}=X\times _{S}{\overline {s}}} is regular.

(iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties.

If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.